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The Wigner representation Fs(p, q) of a quantum operator F(p, Q) is
defined by Fs(p, ¢9)=hTr F(p, @)4d(p—p, ¢—q) where 4 is a quantum
analogue of a delta function in the phase space. This gives in particular
the Wigner distribution function for a density operator. Basic theorems
are summarized for the computation rules for quantummechanical
operators in the Wigner representation. This is applied, in particular,
to electrons in a magnetic field, for which a Wigner d. f. is introduced
to describe the distribution of physical momenta "=m%, ¥ being the
velocity, and the position . This description has the advantage to avoid
the use of a vector potential and so to be gauge-independent. As
examples of application, the diamagnetism and the Hall effect are briefly
treated. Further applications of this treatment will be published later.

Introduction

§1.

Many years ago, Wigner? introduced into
the quantum mechanics a phase-space distri-
bution function which is an analogue to the
distribution function of classical statistical
mechanics and is called the Wigner distribu-
tion function (abbreviated in the following
as Wigner d.f.). A Wigner d.f. has no
definite sign unlike usual distribution
functions, but nevertheless it provides a
nice way of formulating quantum mechanics
as a probabilistic theory. This point of
view was extensively examined by Moyal®.
For a practical purpose of computation,
. Wigner distribution functions are particularly
useful in order to obtain quantum corrections
to classical formulae, because it gives a
systematic method of expanding physical
quantities in terms of #, or the value of the
non-commuting variables. Thus, Wigner
d. f. has been extensively used in the theories
of gaseous and liquid systems®. Now, similar
applications can be made for treating
electrons in a magnetic field. If the magnetic
field H lies in the z-direction and is uniform
in space, the physical momenta,

Te =Mz, Ty=Mly

m being the mass and v. and vy, the velocity
components, have the commutator
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If it is desired to obtain an expansion in
terms of H or #’, then the Wigner d. f. will
be found to be a very useful tool. The
purpose of the present paper is to show a
few examples of such application of Wigner
d.f.#» However, considering the fact that
only few literatures are available for the
reference of basic theorems concerning the
Wigner d. f., Part I of this paper is devoted
to a brief summary of such theorems, some
of which are presented there in somewhat
new forms although most of them have been
already known.

Part I. Wigner Representation
§2. Symmetrized Operators

For simplicity’s sake, most of the following
formulae are written for a system with only
one degree of freedom, the cannonical
variables of which will be denoted by p and
g, but they apply to many degrees of freedom
with obvious modifications. Gothic letters,
as p or ¢, mean quantum-mechanical operators
and corresponding classical variables are
denoted by p or gq.

A function of p and q, As«(p, @), is said to
be a symmetrized operator if it has the
form
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Adp, @)= S SdEdnGA(E, 7 expiEp+na)  (2.1)
because, as evident from the definition of
the exponential function, any product of p
and q in this function is totally symmetrized
with respect to their order of multiplication.
Generally speaking, a quantum mechanical
operator is not necessarity symmetrized, but
it can be expressed in terms of symmetrized
operators. For instance in

% %
pg= *1—(pq+qp)+—.E {pa}s+ -,
2 21 21

the left hand side is not symmetrized,
whereas the right hand side is so. A
prescription how to rewrite an operator
function, F(p, @) into a symmetrized form
F«(p, q) is given by the following theorem.
Other equivalent methods will be given later.

Theorem 1. For a given operator function,
F(p, q), define G(¢, 1) by

ESQ_O {qg'—#€|Flg'>dq’ exp {‘M( q _%E)}’
2.3)

where (2.3) is an explicit form of (2.2) in the
g-representation. Then the operator F(p, q)
can be expressed by

F(p, e)=F«(p, @)

=£SSG(E, DdEdn exp iEp-nq) , (2.4)
2

—oc0

(2.2)

which gives its symmetrized form.
This theorem may be stated in an alter-
native form:

Theorem 2. For a given operator function,
F(p, q), define :

Fy(p, )=hTr F(p, Q4(p—p, —aq)
_ _#€ (2N
_S<q 2 |F|q+ 2‘/\e hds .

Then we have
F(p, 9)=F«p, @)

(2.5)
(2.6)

=S§dpqus<p, DAp—p, —0), @.7)
where
Ap—p, —q)
1 (f .
=y Hexp i(Ep—p)+7a—a) . 28)

—oo
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is a quantum-analogue of a delta function in
the phase space.

For the proof of the theorems, we refer
to a lemma which is due to Moyal:

Lemma
exp {(Ep-1q) =P ginlg=iHE/2 = gind pitP giditn/2
—gi£p/2ginagiEn/2 — ging/2gitpging/2 | (2.9)
or in the g-representation,
{q'lexp iép+7a)lq”">

—exp iﬁ( g+ %h&)&(q’wé—q") . (@210

These are easily obtained from the commu-
tation rule of p and gq.

By Eq. (2.10), (2.2) gives (2.3), which is
inserted into (2.4) to give

{g'|Fsp, Olg'">

:ﬁﬁ exp {m( q’+£$>}5(q'+h5—q")d5d>yf
2T 2

X<Lq'""—HE|Flq'" " )dq"" exp { —17 ( q"'——g— E)}

={q'|Flq") .
This establishes the equality of F(p, g) and
Fy(p, @), the latter being symmetrized by its
definition (2.4).

By Egs. (2.2) and (2.8), Fs(p, q) is in fact
equal to

o

Fiq, q>=§“0<f, Ddedyeerm | (2.11)

—oo

Thus Eq. (2.7) is equivalent to Eq. (2.4).
Equation (2.6) follows from (2.3) and (2.11).

Now, let p be a density operator to describe
a statistical property of a quantum system
which may be in a pure or mixed state.
Then we have:

Theorem 3. The Wigner d.f. for the
density operator p is defined by
S, 9=mdp—p, a—a)>

=h Tr pdp—p, 9—) -
Then p is represented by

o(p, q>=§§dpdqf<p, Ap—p, —q) . (2.13)

(2.12)

This is a direct consequence of the preced-
ing theorems. Equation (2.12) is equivalent
to the more familar definition of Wigner
d. f.,
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1, q)=S/ q—f—lp|q+L>eM/ﬁdr, (2.19)
N2 2

as is seen at once from Eq. (2.6). This can
be obtained by the matrix representation
of 4,

{q'4p—p, a—Dlg'">
1 ot Y
—zﬂga’&?(q g+ 2)5@ g —hE)e-,
(2.15)

which follows from the lemma (2.10). Equa-
tion (2.15) also gives

Tr dp—p. - @)= (2.16)
and
Sgdpdqu(p—p, g—)=1. 2.17)
Accordingly the normalization
Tt o(o, q)=-}ll-ggdpdqf(p, 9, (218)

is proved.
It should be remembered that a density
operator p(p, q), for example,

o(p q):e—ﬁ%(p, Q)

is not symmetrized. Therefore the calcula-
tion of the corresponding Wigner d.f. is
equivalent to rewriting it into a symmetrized
form.

§3. Wigner Operators

We have seen that a phase . function,
Fy(p, ¢), is found for a given operator F(p, q)
by Eq. (2.5). This is generally a one-to-one
correspondence, so that F«(p,q) may be
regarded as a representation of the operator
F(p, q), which will be called the Wigner
representation of F. The functional form of
Fyp, q) is identical with that of F(p, q) if
and only if the latter is already symmetrized.
Generally, a product of two operators, 4 and
B, is not symmetrized even when they are
symmetrized. Thus, we have to find the
rule to construct the Wigner representation
of such a product from the known Wigner
representations of A4 and B. For this
purpose, we introduce differential operators,
which will be called Wigner operators, by
the following definitions:

%9

Av=A; ,
<p + 2 0q
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=2%S§dsdn0,4(e, 7

—o0

ceorle(pe 2 o(o-55)

3B.D

_
= SdEdv;GA(E, 7

xespil (2= 5) H1( 45 55))
3.2)
where

o

Gule, 71)=%§5As(?, Pe-ierrodpdg
=Tr A(p, q) exp {—i(éq+1q)} . (3.3)
By Eq. (2.11), Asp,q is the Wigner
representation of the operator, A=A(p, q).
We then have:

Theorem 4. Let AP, q) and B«(p, q) be
the Wigner representations of the operators
A and B. Then

Aw1=Au-1=A4p, q) , (3.4)
and
Wigner representation of AB

For the proof, we note the identities
exp i(§1p+7:9) exp i(§2p+7:q)
=exp [i{(fl +E)p-+(1+72)g}+ %’(51772—77152) ] ,

a 3.6)
woldr-52) (o2}
—exp i(Ep+74g) exp %(so% —v%) . (3.72)

e (20 O : '
=exp 2<an ”ap) expiép+7q9) , (3.7b)

and
. # 9 _
exp z{ €1<p+ 2% aq) +7 (q

: D _hd
X exp z{&.(p-l—zz. 64) +7;z<q 2% 61))}
# 0

= exp z{ <&+$z>(-f’+z7 571)

BN i
+ (771+7/2)< —21: a}5>} exp 2 Epa—ni&e) ,
(3.8)
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Equation (3.6) follows from the lemma (2.9),
whereas (3.7) and (3.8) follow from a similar
identity,

exp (ax + bi)zeaweb(a/ax)eub/z
ox
=eb(a/aa;)eaaae—ab/2 .
Equation (3.4) is easily seen from the defini-
tions of Aw and Aw, (3.1) and (3.2), by using
Eq. (3.7a); namely,

o

Au-1= 'z'h% SSdEdﬁGA(E, 7) exp i(Ep+71q)

h.0 0
X exp 2 <an vap>-1
:ﬁﬂdédﬂGA(E 7)

2n ’

xexp iép+19)=A«p, ) ,
and similarly for A,-1. In order to show
(3.5), we observe first that Egs. (2.4) and
(3.6) give

an=(1)] |

X exp [{1(51 +&)p+(91+92)q}

8

8 ey

SGA@, 100G a(Ea, o) dErdndEadys

-I-i‘g(&??z —7/152)] , (3.10)
which shows that
Wigner representation of AB
2 =)
=<2h—ﬂ) SMGA@, DG 5(Ea, p)dErdnidEadys
X exp [1(51 +&)p+(11+192)q}
ih '
+2 e mez)]. (3.11)

Now, use Eq. (3.1) for explicit expressions
of Ay, and B, Eq. (3.8) for the product of
exponential operators and Eq. (3.7a) for
operating the differential operator on 1; then
one easily sees that A»Bw,-1 is in fact equal
to (3.11). By a similar calculation the second
equality in (3.5) can be established. This
last point can, however, be stated by a more
general theorem; i.e.,

Theorem 5. For Wigner operators defined
by (3.1) and (3.2), we have the identity,
AwBu=BuwAw, or [Aw, B,]=0. (3.12)
This follows from the identity,

Ryogo Kuso

(3.9)
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[exp i{&(p—l—%;%) + 771( ——'2% %)} ,

cofs(o-b ) o s+ 2 ) o
(3.13)

This is proved by repeated use of the rela-
tions (3.7a, b) and (3.9). Therefore, Eq. (3.5)
is obtained as

AuwBy-1=A%B,-1=B,Au-1. (3.14)
This means that the product of two operators,
AB, can be interpreted into the Wigner
representation in two ways (which are of
course equivalent to one another); namely,
if A multiplies B from the left, A, operates
on By; if B multiplies A from the right,
B, operates on A,. Therefore, we may call
Aw, defined by (3.1), a left Wigner operator,
and A., defined by (3.2) a right Wigner
operator. For example,

.AwaCwa' 1:Awal—)wa’ 1= e
:l_)wAwaCw' lzﬁwAwaEw‘ 1: .
=DuCuwBuAu-1, (3.15)

is the Wigner representation of the operator
product, ABCD; all of the expressions in
Eq. (3.15) give the same result, because they
merely correspend to different interpretation
of multiplication from the left or from the
right.

If an operator F(p, q) is given in the form
(2.7), its trace is obtained by

Tr F(p, q)=%”dpqus(P, 9,

because of Eq. (2.16). Thus, taking the trace
of a quantum operator is the phase-space
integration of its Wigner representation. For
this we have the basic theorem:

(3.16)

Theorem 6. The trace of AB, if it exists,
is given by

Tr ABzﬂgdpqus(p, DB, @), (3.17)

in the Wigner representation. This is proved
as follows;

Tr AB=%S gdpquwa- 1

:%Sgdpdq%” dédy

Kl .
p p) expi(§p+1q)

XGA(S’ 77)38(17, Q) )

X exp ﬁ(fi—n
2\ dq
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%S Sdpdc}% g S dedyet e Ga(E, DB, @) »
1
/3

— SSdpqus(P, DBb, q) -

The second line is obtained from the first
line, which follows from (3.16) and (3.5), by
writing A» in the form (3.2) with the
transformation (3.7b) and by using the
relation (3.4) for B,-1. The third line is the
result of partial integration, the boundary
values being assumed to vanish.

By the theorems 4, 5, 6, Eq. (3.15) and
by the cyclic property of trace, the trace of
a product, ABCD, for example, can be
expressed in various forms, all of which give
of course the identical value provided that
the trace does converge. Thus, for example,
we may write

Tr ABCD
HdpquwaCst(p 2

Hdpqus@, DBLCaD., 9

i

“dpdq@wm@, DXCoDx D, D)

S S RN

Sgdpd«AwBs(p, DXCoDip, 3)

Il

SSdpdq(DwAs(ﬁ, DXBuCulb, @), etc.

(3.18)

There exists another transformation which
gives different appearance of the expression
keeping, however, the value of the trace
invariant. This is shown by

Tr AB---D
1

=2\ AuBo---Do-1
h“A B

h o
= V| wae (=555
e 0 e 02
XeXp<2i6p6q>A Dwexp< 27 3p6q>
=% S §dpquwe- .. Dyl (3.19)
where
h 3 no ko
Au eXp(z 8p6q>A(p+2i6q’ q 2iap)
“ex eh 02 )
p( 2 3pdgq
#(l4e) 0 _#(l—e) j_)
—As<p+ 2 dq’ 2 op)°

(3.20)
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The theorems and remarks mentioned
above can be applied for calculations of
statistical averages defined by a given density
operator p. Thus we can write

SSdpqus@ Dfb, ), (3.21)

or more generally
{AB---D>=Tr AB---Dp

:2“ dpdqAuBa---Duf(D, ) ,

{A)=Tr Ap=

(3.22)

where A., etc. are Wigner operators operat-
ing on the Wigner d. f.. By such relations
as (3.18) and (3.19), the expression (3.22) may
also be written in a number of different
ways.

Finally, we remark

Theorem 7. The Wigner operator Aw
defined by (3.1) may be written as
A0 6 o 0
Av=exp {m(apwq 34 ap)}As(p’ D
(3.23)

where 0/0p4 or 0/0gs means the differentia-
tion of the function As(p, ¢) while 9/dp or
0/0q operates on a function which follows
after Aw; namely

Awf(p, Q)
— (=)yhmtm o™ Al(p, q) ™ f(p, 9)
s M (20 apragr ograp™
(3.24)

The differentiations of As and f can be
separated in this way by virtue of the
identity (3.7a).

§4. Egquation of Motion and Bloch Equation

By the basic theorems given in the
preceding sections, it is easy to interpret
quantum-mechanical expressions for operators
into the Wigner representationt or to
interpret expressions in the Wigner represet-
ation back into more familiar quantum-
operator expressions. In this way, one can
choose either representation convenient of the
purpose of calculation.

The equation of motion of the density
matrix p,

op_ 1
it [£#(Dp, q, 1), pl] , 4.1

is now read, in the Wigner representation,
as
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U_lsm-mp=izr, 4 A, @)=A(P, D)
ot ih The explicit time dependence of the
where S#(p, ¢, t) is the Hamiltonian, which Wigner representation,
may explicitly depend on the time £, and SZ% As(be, g)=A{; D, q) (4.8)
and 5% are the corresponding Wigner with the initial condition
operators. If S#4(p, q,t) is already a sym- A4(0; b, )= AdbD, q) » 4.9)

metrized operator, as it usually is, then the
“Liouville operator” for the Wigner d. f. is
given by

cep 1 ho kO
Zg:ih{%<p+2i8q’ a Ziap’t)

h 0 h 9
_%(p—zmq’ q+2¢ap’t>}
=i%{é‘£’(pw, G, B)— SFBar Tos 1) -

4.3

If this is expanded in a power series of %
by the formula (3.24), the first term in 0(%°)
is of course the classical Liouville operator,
and the following terms appearing only in
even powers of 7% give its quantum corrections.
Correspondingly, the Heisenberg equation
-of motion of a dynamical variable A=A(p, q+),
L A a) =3 1A 00, 00 2,1
ih
(4.4)

is read as
%As(pt, Qt):—l.g(ﬁt, g, t)AS(pt$ qt) ) (4-5)

where _&(b:, q:, t) has the same functional
form as (4.3). Obviously, in the classical
limit of #—0, Eq. (4.5) is identical with the
classical equation of motion

;%A(ﬁt, @)= —i.Fa (b, i, DA ¢2)

_04 02 0AdZF
0g: 0p:  0qi 0g:
which is equivalent to the Hamilton equation,

pt:—’aa;%(pt’ qs, t)v éz_a_%(pt’ qz, t) )

ops
4.7

because the phase function A(p:, g:) depends
on ¢ through the temporal change of p: and
g:, which is determined by (4.7) for a given
initial condition, e. g. po=p, go=¢q. In the
same way, Eq. (4.5) determines the temporal
change of the Wigner representation of a
quantum operator A(p:, q:) which obeys Eq.
(4.4) with the corresponding initial condition

, (4.6)

may‘ be defined by
As(t; P: q):h Tr A(pty Qt)A(p_‘p, q_q) .

(4.10)
In particular,
pe=hTr pd(p—p, 9—q) ,
qi=h Tr q:d(p—p, 9—q) , (4.11)

give the Wigner representations of canonical
variables with the initial condition, po=p,
go=q. By differentiating Eq. (4.10) with
respect to ¢ and by using Eq. (4.4), (4.11)
and the theorems 3 and 4, we derive

gz‘ Adt; p, 9=—i L (be, g1, DAL . Q) -

(4.12)

In particular, p: and ¢: defined by (4.11)
satisfy

dps . dgs .

o 1. Pe a 1.2q: .
This shows that the solution of (4.12) is
given by (4.8). This can be directly seen
by noticing that the formal solution of Eq.
(4.12) can be written as

Aslt; p, =SB A0, 9)
=S(OALD, PSE

(4.13)

(4.14)

where

S(t):exp_,( —i g:g(p, q, t’)dt’)

Sy :exp@< i S:_g(p, a, t’)dt’) . (4.15)

are ordered exponential operators ordered
chronologically as indicated by arrows. Since
&~ is a differential operator, the last factor
S(#) of (4.4) results in 1. In the same way
we have
De=SHPp=S()pS~'(?)
q:=S(t)g=S()gS™(¥)
0 0 0 0
— =S)=S{#)", ——=SE)SE)*.
2y =SSO, 5 =S S
(4.16)

Thus, by differentiating (4.14) with respect
to ¢, we obtain
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AL 0D 15 2 (p, g, HALD, @)

at
=—18(). L (b, ¢, HS@E)*S) A, @)
=—1 L (b, qi, D AL; P, @),
which proves that (4.14) is the solution of
(4.12) and at the same time that it is equal
to (4.8).
If the density operater represents the
canonical distribution with the parameter

B=1/kT ,
it satisfies the Bloch equation,
0
—p=— , 4.17a
Y Fp (4.17a)
or
0
—p=— , 4.17b
25" pSE ( )
with the initial condition,
pg:o:]. .

The Bloch equation, (4.17a) or (4.17b), is
interpreted into the Wigner representation

as

of __

o5 SEr, (4.182)
or

of _ _ o=

e =z (4.18b)

Therefore the Wigner d. f. for the canonical
distribution satisfies

of . _ 1 7
5= g (I,
= Lt 00 00+ 2 Pn 2. (419)

Thus, it can be written as

Ab, a; H=e P#v.1
—¢ ™ F%w .1

o B Fut T2 (4.20)

Any of these expressions can be used for
computation.

Part II. Electrons in a Magnetic Field
§5. Commutation Rules and Wigner
Representation
Let us now consider an electron in a
magnetic field H which is derived from a
vector potential Zi(?c). The Hamiltonian is
then given by

o= 2};( 5 —f—ﬁ)ﬁ V@, 61
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where 5 is the canonical momentum. The
physical momentum 7 may be defined by

_ ax_» ¢ 7
= =p——A , 2
i mdz‘ 4 c ¢ )
which satisfy the commutation rules
(7, m]=—h.£{a—‘4”—a—é}= el 55
iclox dy ic
and
%
[7s, x]=7, etc. (5.4

We shall use in the following the variables,
7 and %, instead of ZJ and ¥. These are not
canonical since they have the extra non-vanish-
ing commutator (5.3), but they are inde-
pendent of the gauge of the vector potential and
have the advantage of being more physical
than the canonical variables p and % In
terms of these variables, the Hamiltonian
(56.1) keeps the form,

=L Ve, (5.5)
2m
the magnetic field entering only into the com-
mutator (5.3).

Now, a Wigner distribution function,
originally defined as a function of p and %,
can be regarded as a function of 7 and %
simply by the change of independent
variables defined by (5.2), which has the
Jacobian equal to 1;i.e.

0Ty, Ty, Ty X, Y, .z)__1

(b=, Dy, Prs %, 9, 2)
Then any Wigner operator, introduced for
the p—x representation of Wigner distribu-
tion functions can be transformed into a
differential operator operating on functions
of 7 ond . By changing the independent
variables in this way, we have the transfor-
mation,

0 0

2ps :—a_n:: , etc., (5.6)
B
(6x » \0%/x
__E. aAwa_ %@i aA*" a
c ( ox oms " ox omy | ox 377:,) » ete..

Thus we have the following transformation
of the Wigner operators:

# 2 —x—ﬁa—i,etc.

27: a?fac (5.7)
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# 0 1 - # 0 # 0
sw=Pe T I = V] — =) x —_—
e b o +z’h{ (" o 6‘1%) V(“ 2 aa-)}‘
e _h 0 ko %0 € a9
Ae (x 2i 8ps ’ 2 0py " 2 apz) T o o (6.12)
n # 0 The quantum mechanical Liouville operator,
12 ax . %, in this representation takes a parti-
he [(0A, & 0A, 8 0A. d cularly simple form The first two terms
_Zic< ox oz, = ox om, ox an,> of (5.12), i. e.,
: .0
—i—%{Ax(x, 3, 2) ir— _%”5: —{Vw 7.,  (5.13)
5o P h oo is exactly the same as that in the absence
—Az< x_"z’;é_ﬁ‘y‘ GNP YW Z_Z_z' iz, >} > of a magnetic field, while the last term

etc. (5.8)

If the magnetic field is varying in space only
slowly, the last term of (5.8) can be expanded
to result in

ﬂxw—ﬂz_l'ﬁ—i

2{ 0x

he 0
—— | He—— Hy— ), etc.
210( “or, Yox,
which is exact if H is uniform or is a good
approximation if

#| grad H|/HL |=| , (5.10)

for relevant values of the momentum, i.e.,
if the magnetic field hardly changes in the
characteristic wave length of the electron.

Thus we can define a Wigner representa-
tion for the quantum mechanics of electrons
in a magnetic field, which may be called the
(7, %) Wigner representation. Unlike the
Wigner representation discussed in Part I,
this is characterized by the use of non-
canonical variables. It is rather important
from a general methodological point of view
to recognize that noncanonical variables
can be introduced in the Wigner representa-
tion in such a simple manner.

Let us assume a uniform, constant magnetic
field H, for which (5.9) holds exactly. The
equation of motion of the density matrix
will be written in the (%, ) Wigner repre-
sentation as

1@, 5, =i LS, 3 1)

(5.9

(5.11)
~where
z'.%:é{%m, o) — I (B, 7))

1.4
m 0%

. , e z .. 0 0 i
1. Z'm—cH-ﬂ:Xé%zan(maTy— Manx) ,
(5.14)
represents the Lorentz force. The last
expression is for the case where H lies
in the z-direction, . being the cyclotron

frequency
(5.15)

Note that (5.14) is very simple because of
the assumption of a constant mass m in
(5.1). This is one of the advantages of using
a Wigner representation in a magnetic
problem.

§ 6.

As an illustration of the application of the
Wigner representation in magnetic problems
let us here consider the diamagnetism of
electrons. For simplicity, we ignore the
electron interactions so that the problem is
essentially a one-particle problem. First we
treat non-degenerate electrons obeying the
Boltzmann statistics. Degenerate cases can
easily be obtained from the results of a
non-degenerate case.

Therefore, we now calculate the density
matrix

w.=eHmec .

Landau Diamagnetism

p=e"ﬁ% R 6.1)
in the (#Z,x) Wigner representation. The
Wigner d. f. is then given by

f&@, B)=e B%v.1, (6.2)

where the Wigner operator H, is given by

%ziﬁmm—%wf;{/ ro5

1 # 0\ # 0\?
0—_= 2 L
<z m{( 2i 0 >+( y+228y>
0
b

(o)}
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__ N L AN
= 2mz{< 2 ax>any

h 0 0
(=3 es o)

s == ().

8m \0m,2 om,? ©6.4)

The magnetic field H is assumed to be in
the z-direction and #’ is defined by

#'=eHh/c . (6.5)

In order to calculate f to the first order of
H, 5%, in (6.3) may be omitted, and (6.2)
can be expanded in 5% as

A% . .}1

f&, B)=F, )+ (&, £)+- -

:{e“ﬁ%ow_Sfﬁe_(ﬁ_l)%wo%'e_
0

(6.6)

As is well known, in the limit of #—0,

the classical electrons will not give any

magnetic effect. If the spins of electrons

~are disregarded the lowest order quantum

effect starts from the order #2, which is the

Landau diamagnetism. This is obtained

from (6.6) by a very simple calculation in

the following way.
Note first that

e M 1= A0 LOG),  (6.7)

where
=L aive.
2m

The fact that a Wigner d.f. contains #
only in even powers is immediately seen
from (4.19). Since 5% is already O(#%), the
same classical limit can be used in exp
{—=(B—N %" in (6.6). Thus we easily obtain

f@, %= h dee-—(ﬁ Do
mi

% 9 0N\ e\~
{< G ax>any ( v ay)am}e
:_hig dz.p(ff_yﬂ_ﬂ_wély—mo '
4dm Jo m dx m 0y
IR g OV OV —pa,
= 12m2'8 <n:7, P Ty By) .
This is a good approximation for a slowly
changing potential V, because the expansion
of a Wigner d. f. in % as (6.7) is essentially

(6.8)
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an expansion in terms of the ratio of the

relevant electron wave length and a length

characterizing the spacial variation of V.
The current distribution is obtained by

jmz—;L—Smf’(ﬁ, 2z / gf(ﬁ, R)d7 .

By using (6.8) and (6.7) we obtain the
current density distribution in 0(%~%) as

(6.9)

@)= Nh e ﬁ B rx grad vye-sr / Se‘ﬁ”d?c
(6.10)
or
;’(Fc)z c—g yﬁﬁ X grad n(%) , (6.11)

where N is the total number of electrons,
n(X) their density at ¥ and gg is the Bohr
magneton. The magnetic moment density
m(x) is then given by

@)=L ) 1, 6.12)

and the total magnetic moment ¢ by
- N, .,z  Npsig ‘
p=— Bus*H= 3BT H, (6.13)

is the Landau diamagnetism for
obtained by nondegenerate electrons. This.
may also be calculating the moment of cur-
rent distribution from (6.11), using the virial
theorem,

aV\ _ AV N\ _
<x 8x>_<y3y>_kT’

which holds in the Boltzmann
irrespective of the potential.

The above results can be easily translated
into degenerate Fermi statistics with the aid
of the operator equation,

g(%){g(E)dEa(E— 27)

(6.14)

statistics.

_ 1 ( pE—p
—gg(E>d 2m'ge dg . (6.15)

Thus, for example

Fo(7, % H= S aE

BP0 41 2mi gf 5%, %; Befrdp,

(6.16)

gives the Wigner d. f. for electrons obeying
the Fermi statistics if the unnormalized
Boltzmann-Wigner d. f. f(7, %), Eq. (6.6), is
inserted into fz in the integrand. Similarly,
expectations of physical quantities can be
obtained from the results for the Boltzmann,
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statistics. For instance, the current density
(6.11) can be translated into that for the
Fermi-distribution as

?p(?c)=-é—c#32ﬁ>< grad ns(%) , 6.17)
where
1P BN
nF(x)z——SS P (E—~—-— V@) )dndEg(E) ,
hd 2m
(6.18)

g(E) being the Fermi distribution function.

For strongly degenerate electrons, this
becomes
m(?c):iEa( = _v@) )dﬁ ., (6.19)
n? 2m
which is an approximation for a slowly

varying potential as is obtained by a WKB

approximation. The integrated magnetic
moment is then given by
. 1

fim—gp AVH, (6.20)
for degenerate electrons, £2(¢) being the state
density at the Fermi level {. Equation (6.20)
is the well known result of Landau dia-
magnetism.

A few points may be remarked here. The

expressions (6.13) or (6.20) for the Landau
diamagnetism of non-interacting electrons
can be derived in different ways. First,
one may calculate the free energy of electrons
in a free space (V=0) by considering the
quantized Landau levels®. The free energy
increases in H? corresponding to the
diamagnetism. Also, one can obtain the
same result for completely free electrons in
a non-uniform magnetic field, by taking a
limit of .susceptibility as the wave-length of
the imposed field grows to infinity. These
derivations seem to indicate that the Landau
diamagnetism is a bulk property and exists
even for free electrons. On the other hand,
Egs. (6.10) and (6.17) show that the dia-
magnetic current exists only when the poten-
tial is varying in space.

The current flows in perpendicular to the
potential gradient or along the equipotential
lines. Although these formulae apply only
for a slowly varying potential, not for an
abruptly changing potential, this feature of
the diamagnetic current is generally true.
Landau® showed this by calculating the
current along the circumference of the

Ryogo KuBo

(Vol. 19,

domain confining free electrons. This gives
an interpretation of the Landau diamagnetism
as a surface effect.

These two interpretations of the Landau
diamagnetism are not contradictory, because
a surface integral may be transformed into
a volume integral. However, it seems im-
portant to realize that the Landau diamag-
netism is associated with a current which
arises from a sort of quantum fluctuation
directed by the potential gradient and the
applied magnetic field. This a physical
interpretation of Eq. (6.10).

The present treatment can be extended to
include the electron spins and the spin-orbit
coupling effect. For that purpose the
Wigner d.f., (6.2), is regarded as a two-
component vector and the Wigner operators
are regarded as two-by-two matrices corres-
ponding to the spin operators. It is easy to
see, then, that to 0(%%) the orbital part and
the spin part are simply additive in the
magnetic susceptibility. = The contribution
of orbital paramagnetism also enters only
from 0(#*%). It seems to be very interesting
to apply this method to the study of orbital
and spin magnetism of impurity .states in
metals. Details of such an application will
be reported later.

When the potential V is rapidly changing
in space, the wave nature of electron motion
will predominate so that an expansion of
f(#, %), (6.2), in #, is not convenient. The
use of the Wigner representation in the
form as described in §5 is not, however,
intended to be necessarily bound to such an
expansion. It is rather meant to be used
for an expansion in #’, (6.5), or in the
magnetic field. © Thus, it is sometimes
advisable to use this representation only for
such a purpose and to switch back to ordinary
quantum mechanical representation.

For instance, Eq. (6.6) gives

7@ w= | b

2mi )o

A WA

X{( et a;;)am <“1’ o ay)am}
xe A (6.21)
for the first order (in H) deviation of the
Wigner d. f. The corresponding quantum
operator can be easily found by using the
rule stated by the theorem 4 in §3. This
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is given by*

p':_f‘,’ir dre—B—D%s
2 Jo

X {paly, e 0]~ pilx, e %0}, (6.22)
where the momentum is now written as 25
because the Hamiltonian 5% does not involve
the magnetic field and so there is no distinc-
tion between 5 and 7. In (6.22), the position
variables x and y appear in commutators
with a density operator, because they

correspond to the differential operator
ho ko _
; dme U T Gm, YT

which appear in (6.21)..
The average orbital magnetic moment is
obtained from p’; i. e.

X {palye %0 | —p,[xe=A%0]}
where Z, is the partition

Zo=Tre F2%o
and L. is the angular momentum in z-direc-

(6.23)

tion. Eq. (6.23) can be transformed into
e etH
dmAc?Z,

><Tr{§ﬁ dre=(E=D%o [ o~

0
—e~ P p(x2y7)} (6.29)
which is a familiar expression of the orbital

magnetic moment. For this transformation
‘we use the relation

Trr dre—B=D%s p o= %0 1,

0
:Tr;% [e_ﬁ%’o’ xyLs
:Z% Tr e~ P%ofx, yL.l=m Tre F%oy2 |
rand a similar equation

—m Tre P

which are obtained by the identity®

* In this and following sections quantum
operators are denoted simply by italic letters in
stead of gothic letters when they are written in
more or less familiar quantum-mechanical expres-
sions.
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SB die=B=D%0 4 p— 1%2[8_‘8%, Al
0

The expression of p’, (6.22), may also be
written as

p'= —%SBdx{[e‘(’g“b%’0 Vb
0
—[e=B=D%0 x]p,Je— %0
- —wigﬁ di{[e™ 1%’0, Yps
2 Jo

—[e~ %0, xlp,le B=D%0,
The difference of this and (6.22) is

(6.25)

%S: d,{{[e—(ﬁ"z)%o pae™ 1%’0’ 9]
_[e—(ﬁ—l)%o pze—l%o , x]}
=2 llle P70, alyl— (e~ oyl
MW,
2ih
Thus ¢’ can be written as

le™ #%ofx, y]1=0.

o= aille=0=D%o, yipeo= e

1o~ op, [y, ¢~ B—D%0]
—le=B=D%o x1p e~ 450

—e~ Mop x, e~ (B=AZ0Y), (6.26)

which exhibits clearly the hermitian property
of p'.

Generally, the two terms in (6.24) have a
big cancellation which, of course, must arise
because the second term becomes large if
the electron distribution extends in space.
The expression of o’ in (6.22) or (6.26) makes
this cancellation appear in a more natural
way. Therefore, these equations and (6.23)
will be useful for calculation of the orbital
magnetism.

§7. Application to Electronic Conduction

Eq. (6.11) can be conveniently applied to
the problem of electronic conduction. When

an external electric field E is applied, Eq.
(5.11) takes the form

-gf —i( Lot L+ L=l L+ Lo
(7.1)

where

ig=—sE 0 Yy 7y, @2
m ox ih

V being the internal potential
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0
or,

ig'zwcz( m—-i— . ) . (73)

and

i Fa=eEx L (7.4)
oz

The summation is carried over electrons.
Following the general method as given by
the author”, Eq. (7.1) can be solved to the
first order of the external field, which is
assumed to be weak, starting from the
condition, »

E@®)—0 as t— —oo,

Fo fo
Then we have

JS—fe=4f
:St dt'e 'L i oz (1f,

(equilibrium) .

(7.5)

from which the electric current is calculated
by

jul)= —gdr by

e,
m

X X dt' e i o (N, (7.6)

where \dI" is the phase space integration.
Inserting (7.4) in (7.6) we obtain the con-

ductivity in the form

qu(w)zre"i“”dtﬂﬁw(t) , (7.6)

¢lw(t)=—fz‘gdr > ”/Leigt Zai”fe . (1.7

This may be transformed into

¢w(t)=;7zgdf'fe za—iv—e—ft Sz, (7.8

by partial integration.
equivalent to
2
Put) =—2—Tr p 3 23, Su(?)]
mih
2 (B
:—f;z—g dATr pe A% >ime A% Siwu(t).
0

(7.9

Let us now use (7.7) to obtain an expansion

in the magnetic field. This can be done by

using (7.9), but Eq. (7.7) is more convenient

for this purpose. Since the magnetic field

appears in & as &/, we easily make the
expansion,

¢W<t>=—f}§dr2me@'$°t

Eq. (7.7) or (7.8) is
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X{l-}-gtdt'e_got,ig'eigot/ +... }
0

L porprt o).
or

v

X > (7.10)

For simplicity we consider here only the
first order term in H, which consists of two
terms:

D)=, 1)+ By o8 5

(7.11)

where

6, (H= —ﬁgdr S
m

X tdt’e’iSZO(t—t’)i_greiSfot’z,a_fo
0 omy ’
(112
= 2ot 0 9
B s(0)= —%Sdrzfrpe@ T (13)

The first term (7.12) is the effect of magnetic
field on the electron motion in the conduction
process, while the second term (7.13)
originates from the change of equilibrium
electron distribution in the magnetic field.
As was discussed in the previous section,
the latter is purely a quantum-mechanical
effect whereas the former is present even in
the classical limit. This difference seems
an important point.
More explicitly, (7.12) is written as

Py 1= —@Stdr ngtdt'eigo(t—ﬂ’
’ m Jo 0

0
07y

or in ordinary quantum operators

¢;:1/,1=

X 2( ”x’a_'“ Ty

omy

>ei9£ot’zaano , (7.14)
Y

2 t
_i?-‘—"c—g dt' Tr po
hm Jo

<[5 2 {m(t'), 1), St}
—x {w'), L0, zwn}]

2 t B
:e—“’;§ dt' Tr poS A% S, e~ A
m= Jo 0

><<2{m<t'>[i%y<t'>, m(t)]}
_x {zy(t’)[i%x(t’), m(t)]}) . (1.15)

where {A, B} means a symmetrixed product
of A and B. Similarly, (7.13) is written as

, __he*o. iZt < 0 o
By o="2 5 Sdrzme Sar, (116)
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e*w B _(B—
_ o 2~ (B— D%
Zozmihi ¥ [Zy ’ So die

(S paly, e 20— 3 p, [, e o)) ]sz)

:’QZ—CDG—SB d] Tr e_(ﬂ_l)%o 2 (pz[y’ e_ 2%0]

0

—pilr, B LSy, S| @
These expressions may be used for a
systematic study of the Hall constant, which
is now under way and will be reported
elsewhere.

Here we make only a brief remark on the
magnetic field effect on the conductivity. If
the equilibrium distribution f° in (7.14) is
symmetric in =#, and =,, then we expect
that

Eéa_fooczﬂyfo-
Ty

This means that, by an electric field pulse.

applied in the y-direction, the distribution
of electrons is shifted in the momentum
space giving rise to a deviation characterized
by a Yi-spherical harmonics. The expression
(7.14) is then interpreted in the following
way: This deviation propagates -in time
from #=0 to #, and then it feels the Lorentz
force from the magnetic field. If the devia-
tion still keeps its Yi—character, the direction
of Yi-harmonics is then turned by 90°.
From ¢ to ¢ the distribution function
changes without the effect of magnetic field.
At the time £, the current is measured in
the z-direction. The intermediate time ¢ is
chosen between 0 and # and the integrated

result of the abovementioned process is the

first order effect in the response function.
From this interpretation, it is clear that we
would have ’

¢';y,1(t):—“’ct¢w(t) . (7.18)
This is true, however, only if the propagation
in (0, ) and that in (¢, f) are totally
uncorrelated. Such an assumption may be
allowed either if the electrons are scattered
by very local scatterers or if the scattering
potential is so weak that any higher order
correlation may be neglected. Equation (7.18)
yields, in the ideal case of

Buall)=bu(t) =L e 117
m

Wigner Representation of Quantum Operators and Its Applications

2139

en
Ogy=—"" WeT2=—0yz@W,T .
m

(7.19)

Thus, the ideal form of o4y, (7.19), holds
only in such ideal limits. If the force range
of scattering potential becoms larger, so
that the ratio

Ta/T s=duration of collision/mean free time
becomes larger, deviations from (7.19) are
generally to be expected.
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